520 Intro to AI Fall 2020 - Final Project

Po Yuan Huang - RUID 195003420, Abhishek Bhatt - RUID 198009864
April 27, 2021

1 Introduction

In this project, we design multiple classifiers: a Naive Bayes classifier, a Percep-
tron, a softmax regressor and a neural network. We test these classifiers on two
image data sets: a set of scanned handwritten digit images (output is numerical
digits from 0 to 9) and a set of face images in which edges have already been
detected (output is numerical digits 1 or 0, corresponding to whether the edge
image is a face or not respectively).

2 Model 1 : Naive Bayes

Features : all pixels - 1 for value, 0 for empty
Algorithm :
Training -

(a) Count number of training examples, n

(b) For labels k = 1 to K, count number of times label = k in the training
set, c(y=k)

(¢) For labels k = 1 to K, get probability of label = k, p(y=k) = ¢(y=k) / n

(d) For each of the features f = 1 to d, count number of training examples
with value = u, given label is k, c(xq=u | y=k)

(e) For each of the features f = 1 to d, get probability of feature value = u,
given label is k, p(xq=u | y=k) = c¢(xq=u | y=k) / n

Validation/Testing -

(a) For labels k = 1 to K, using Naive Bayes assumption, get probability of
observing a given data point & in validation/test set with feature values
(vi...vq) as

- d
p(Zly = k) = [, p(x; = vily = k)

where p(x; = vj|ly = k) has been computed during training

(b)

()

For labels k = 1 to K, compute p(y = k|Z) = p(Z|ly = k)p(y = k)
where p(y = k) has been computed during training

Classify as label k such that
argmazyeqy,. kylog(p(y = k)p(Zly = k))

,,,,,

Results :

Faces - Please refer Figure 1.

Digits - Please refer Figure 2.

Mean and Standard deviation are calculated under 4 iterations, with the default
smoothing parameter value of 0.5.

3

Model 2 : Perceptron

Features : all pixels - 1 for value, 0 for empty

Algorithm :
Training -

(f)

Initialize the weight vector @ = (wq,ws ... wq)

For each training data point (7%, %), compute

score(W, ") = wo + wiz1* + ... + waxy

If score(w,) < 0 and y* = true, update the weight vector as
Wy = Wo + 1

wj =w; + ;' forj=1tod

If score(w,¥) >= 0 and y* = false, update the weight vector as
wo = Wy — 1
wj =w; —x;' forj =1tod

Repeat passes over the training data and weight updates for a pre-defined
number of iterations (or until convergence)

For labels k = 1 to K, train a perceptron each such that true implies y=k.

Validation/Testing -

(a)

For a given data point & in validation/test compute

score(Wk, T) = wio + Wg1x1 + - . . + WkaTa

where k = 1 to K corresponds the perceptron learnt for each of the label
classes.

NaiveBayes faces

6| W time mE B
N = JIHHN
D .
S50 5150 51005150052000525005300054000535005450055000
40 - —— error
— std
3{) -
20 4
10 4
D -

T T T T T T T T T T T
550 5100 5150 5150052000525005300053500540005450055000

Figure 1: Faces dataset - training time, mean test error and standard deviation
of test error as a function of the number of data points used for training

(b) Classify as label k such that
argmaxke{lw’K}score(u?k, Z)

Results :

Faces - Please refer Figure 3.

Digits - Please refer Figure 4.

Mean and Standard deviation are calculated under 4 iterations.

NaiveBayes digits

6| W time mE B
N Tl
0 .
S50 5150 51005150052000525005300054000535005450055000
40 4 —— error
— std
3{) -
20 1
10 A
I
0 -

T T T T T T T T T T T
550 5100 5150 5150052000525005300053500540005450055000

Figure 2: Digits dataset - training time, mean test error and standard deviation
of test error as a function of the number of data points used for training

4 Model 3 : Softmax Regression (general ver-
sion of Logistic Regression for multi-class clas-
sification)

Features / Pre-processing :
(a) faces - all pixels, set 0.99999 for value, 0.00005 for empty

digits - all pixels, set 0.99999 for value #, 0.88888 for value +, 0.00005 for
empty

Perceptron faces

Bl time
250 - —

200 - [|| ll lI
150 - == 1 BN B B8
100 == 1 BE B BN BH BB
. un B BE BE AR BN B R

550 5100 51505150052000525005300053500540005450055000

- 2ITor
40 - — gtd

0 - % —_—

T T T T T T T T T T T
550 5100 5150 5150052000525005300053500540005450055000

Figure 3: Faces dataset - training time, mean test error and standard deviation
of test error as a function of the number of data points used for training

(b) faces - row wise moving average, with moving window size 6 and padded
for maintaining image dimension
digits - row wise moving average, with moving window size 4 and padded
for maintaining image dimension

(¢) feature matrix flattened to vector, and label converted to one-hot encoded
vector

Perceptron digits

Bl time
250 - —

200 - [|| ll lI
150 - == 1 BN B B8
100 == 1 BE B BN BH BB
. un B BE BE AR BN B R

550 5100 51505150052000525005300053500540005450055000

- 2ITor
40 - — gtd

.-—-—""_"'_""--—-‘-.___________-_________________’_

T T T T T T T T T T T
550 5100 5150 5150052000525005300053500540005450055000

Figure 4: Digits dataset - training time, mean test error and standard deviation
of test error as a function of the number of data points used for training

Cost function :

J(6) = -

i i 1 {y(“ - k} log Ie(zxp(ﬂ(k)-rx(i))

1 k=1 > e exp (0T z()

Implementation with Numpy -

Z = np.dot(theta.T, X)

expZ = np.exp(Z — np.max(Z))

A = expZ/expZ.sum(azis = 0, keepdims = True)
cost = (—1.0/m) * np.nansum(Y * np.log(A))

K2

where each column in matrix X corresponds to one training example, and each

row in matrices Z and A corresponds to probability of one of the labels.

Gradient of cost function :

m

Vow J(0) == [+ (1{y? =k} = PyD = kjo®;0))]

i=1
Implementation with Numpy -
dZ =A-Y
dtheta = 1./m x np.dot(dZ, X.T)
where each column in matrix X corresponds to one training example, and each

row in matrices A (predicted) and Y (truth) corresponds to probability of one
of the labels.

Hyperparameters :
(a) Initialization for gradient descent : Random
(b) Learning rate for gradient descent : 0.007

(¢) Number of epochs (passes over the training set) for gradient descent : 1000

Results :

Faces - Please refer Figures 5, 6 and 7.

Digits - Please refer Figures 8, 9 and 10.

Mean and Standard deviation are calculated under 5 iterations.

5 Model 4 : Neural Network

Features / Pre-processing :

(a) faces - all pixels, set 0.99999 for value, 0.00005 for empty
digits - all pixels, set 0.99999 for value #, 0.88888 for value +, 0.00005 for
empty

mean test accuracy as a function of the number of data points used for training
(.58 A

056 -

054 -

052 1

050 -

mean test accuracy

(48 -

046 -

I I I I I I ! I !
50 100 150 200 250 300 350 400 450
number of data points used for training

Figure 5: Faces dataset - mean test accuracy as a function of the number of
data points used for training

(b) faces - row wise moving average, with moving window size 6 and padded
for maintaining image dimension
digits - row wise moving average, with moving window size 4 and padded
for maintaining image dimension

(¢) feature matrix flattened to vector, and label converted to one-hot encoded
vector

Setup and Hyperparameters :

(a) Optimizer : Adam
Exponential decay hyperparameter for the first moment estimates, betal
=09
Exponential decay hyperparameter for the second moment estimates, beta2
= 0.999
Hyperparameter preventing division by zero in Adam updates, epsilon =
le-8

standard deviation of test accuracy as a function of the number of data points used for training

0L040 1

0u035 1

0030 A

0025

0020 {

0015 1

0010 o

standard deviation of test accuracy

0005 1

T T T T T T T T T
50 100 150 200 250 300 350 400 450
number of data points used for training

+ Cnode =

Figure 6: Faces dataset - standard deviation of test accuracy as a function of
the number of data points used for training

(b) Initializer for Adam : He initialization

(¢) Number of hidden units -
Input layer / features : 4200 for faces, 784 for digits
Hidden layers : 80, 16
Output layer / Softmax : 2 for faces, 10 for digits

(d) Activation function : ReLU

(e) Learning rate for gradient descent : 0.00007

(f) Number of epochs (passes over the training set) for optimization : 100

(g) Probability of keeping a hidden unit active during drop-out, keepprob =
1 (No dropout)

Results :

Faces - Please refer Figures 11, 12 and 13.

Digits - Please refer Figures 14, 15 and 16.

Mean and Standard deviation are calculated under 5 iterations.

mean training time as a function of the number of data points used for training

B

Lt F= L (=3 -

Pl
i

mean training time (in seconds)

50 100 150 200 250 300 350 400 450
number of data points used for training

Figure 7: Faces dataset - training time as a function of the number of data
points used for training

6 References and Acknowledgements

(a)

Naive Bayes and Perceptron : Code architecture and utility functions used

from the project created by Dan Klein and John DeNero that was given

as part of the programming assignments of Berkeley CS188 course.

URL - https://inst.eecs.berkeley.edu/ cs188/spll/projects/classification/classification.html

Softmax Regression :
URL - http://deeplearning.stanford.edu/tutorial /supervised /SoftmaxRegression/

Neural Network : Code architecture and utility functions used from learn-
ings from multiple course assignments in the Deep Learning Specialization
by deeplearning.ai.

URL - https://www.coursera.org/specializations/deep-learning

10

mean test accuracy as a function of the number of data points used for training

01154 #
0.110
= I
&
0
2 0.105 -
E L |
=
T 0100 -
£
0.095
1 1 1 L) 1 L)
0 1000 2000 3000 4000 5000

number of data points wused for training

Figure 8: Digits dataset - mean test accuracy as a function of the number of
data points used for training

11

standard deviation of test accuracy as a function of the number of data points used for training

=
=]
[=]
=]
i

0.007 -
0006 { 4
0.005
0.004 -
0.003 -

0002 1

standard deviation of test accuracy

0001 + L

o 1000 2000 3000 4000 5000
number of data points used for training

Figure 9: Digits dataset - standard deviation of test accuracy as a function of
the number of data points used for training

mean training time as a function of the number of data points used for training

30_

w B8 HOB W

mean training time (in seconds)

)
i

1 1 I I 1 1
0 1000 2000 3000 4000 5000
number of data points used for training

Figure 10: Digits dataset - training time as a function of the number of data
points used for training

mean test accuracy as a function of the number of data points used for training

055 1

(.54 1

053 A

(.52 1

051

miean test accuracy

050 4

(.49 4

.45 4

T T T T T T T T T
50 100 150 200 250 300 3/0 0 400 450
number of data points used for training

Figure 11: Faces dataset - mean test accuracy as a function of the number of
data points used for training

13

standard deviation of test accuracy as a function of the number of data points used for training
005 4

004 A

003 A

002

001 A

standard deviation of test accuracy

T T T T T T T T T
50 0o 150 200 250 300 350 400 450
number of data points used for training

Figure 12: Faces dataset - standard deviation of test accuracy as a function of
the number of data points used for training

14

mean training time as a function of the number of data points used for training
55 1

B0
(¥,] =
i i

=
Lo
i

L
=
i

Pt
(%]
i

mean training time {in seconds)
Lad
(¥,]
i

Pt
=
i

! ! ! ! ! ! ! ! !
50 100 150 200 250 300 /0 400 450
number of data points used for training

Figure 13: Faces dataset - training time as a function of the number of data
points used for training

15

mean test accuracy as a function of the number of data points used for training
0104 A

0102 -

0100 4

01098

mean test accuracy

0096 4

—

T T T T T
0 1000 2000 3000 4000 5000
number of data points used for training

0094

Figure 14: Digits dataset - mean test accuracy as a function of the number of
data points used for training

16

standard deviation of test accuracy as a function of the number of data points used for training
0014 1

0012

0010 A

00048

0006 A

0004 4

standard deviation of test accuracy

T T T T T
0 1600 2000 3000 4000 5000
number of data points used for training

Figure 15: Digits dataset - standard deviation of test accuracy as a function of
the number of data points used for training

17

mean training time as a function of the number of data points used for training

=

mean training time (in seconds)

0 1000 2000 3000 4000 5000
number of data points used for training

Figure 16: Digits dataset - training time as a function of the number of data
points used for training

18

