
520 Intro to AI Fall 2020 - Final Project

Po Yuan Huang - RUID 195003420, Abhishek Bhatt - RUID 198009864

April 27, 2021

1 Introduction

In this project, we design multiple classifiers: a Naive Bayes classifier, a Percep-
tron, a softmax regressor and a neural network. We test these classifiers on two
image data sets: a set of scanned handwritten digit images (output is numerical
digits from 0 to 9) and a set of face images in which edges have already been
detected (output is numerical digits 1 or 0, corresponding to whether the edge
image is a face or not respectively).

2 Model 1 : Naive Bayes

Features : all pixels - 1 for value, 0 for empty

Algorithm :
Training -

(a) Count number of training examples, n

(b) For labels k = 1 to K, count number of times label = k in the training
set, c(y=k)

(c) For labels k = 1 to K, get probability of label = k, p(y=k) = c(y=k) / n

(d) For each of the features f = 1 to d, count number of training examples
with value = u, given label is k, c(xd=u | y=k)

(e) For each of the features f = 1 to d, get probability of feature value = u,
given label is k, p(xd=u | y=k) = c(xd=u | y=k) / n

Validation/Testing -

(a) For labels k = 1 to K, using Naive Bayes assumption, get probability of
observing a given data point ~x in validation/test set with feature values
(v1...vd) as

p(~x|y = k) =
∏d
j=1 p(xj = vj|y = k)

where p(xj = vj|y = k) has been computed during training

1

(b) For labels k = 1 to K, compute p(y = k|~x) = p(~x|y = k)p(y = k)
where p(y = k) has been computed during training

(c) Classify as label k such that
argmaxk∈{1,...,K}log(p(y = k)p(~x|y = k))

= argmaxk∈{1,...,K}(log(P (y = k)) +
∑d
j=1 log(p(xj = vj|y = k))

Results :
Faces - Please refer Figure 1.
Digits - Please refer Figure 2.
Mean and Standard deviation are calculated under 4 iterations, with the default
smoothing parameter value of 0.5.

3 Model 2 : Perceptron

Features : all pixels - 1 for value, 0 for empty

Algorithm :
Training -

(a) Initialize the weight vector ~w = (w0, w1 . . . wd)

(b) For each training data point (~xi, yi), compute
score(~w, ~xi) = w0 + w1x1

i + . . .+ wdxd
i

(c) If score(~w, ~xi) < 0 and yi = true, update the weight vector as
w0 = w0 + 1
wj = wj + xj

i for j = 1 to d

(d) If score(~w, ~xi) >= 0 and yi = false, update the weight vector as
w0 = w0 − 1
wj = wj − xji for j = 1 to d

(e) Repeat passes over the training data and weight updates for a pre-defined
number of iterations (or until convergence)

(f) For labels k = 1 to K, train a perceptron each such that true implies y=k.

Validation/Testing -

(a) For a given data point ~x in validation/test compute
score(~wk, ~x) = wk0 + wk1x1 + . . .+ wkdxd
where k = 1 to K corresponds the perceptron learnt for each of the label
classes.

2

Figure 1: Faces dataset - training time, mean test error and standard deviation
of test error as a function of the number of data points used for training

(b) Classify as label k such that
argmaxk∈{1,...,K}score(~wk, ~x)

Results :
Faces - Please refer Figure 3.
Digits - Please refer Figure 4.
Mean and Standard deviation are calculated under 4 iterations.

3

Figure 2: Digits dataset - training time, mean test error and standard deviation
of test error as a function of the number of data points used for training

4 Model 3 : Softmax Regression (general ver-
sion of Logistic Regression for multi-class clas-
sification)

Features / Pre-processing :

(a) faces - all pixels, set 0.99999 for value, 0.00005 for empty
digits - all pixels, set 0.99999 for value #, 0.88888 for value +, 0.00005 for
empty

4

Figure 3: Faces dataset - training time, mean test error and standard deviation
of test error as a function of the number of data points used for training

(b) faces - row wise moving average, with moving window size 6 and padded
for maintaining image dimension
digits - row wise moving average, with moving window size 4 and padded
for maintaining image dimension

(c) feature matrix flattened to vector, and label converted to one-hot encoded
vector

5

Figure 4: Digits dataset - training time, mean test error and standard deviation
of test error as a function of the number of data points used for training

Cost function :

J(θ) = −

[
m∑
i=1

K∑
k=1

1
{
y(i) = k

}
log

exp(θ(k)>x(i))∑K
j=1 exp(θ(j)>x(i))

]
Implementation with Numpy -
Z = np.dot(theta.T,X)
expZ = np.exp(Z − np.max(Z))
A = expZ/expZ.sum(axis = 0, keepdims = True)
cost = (−1.0/m) ∗ np.nansum(Y ∗ np.log(A))

where each column in matrix X corresponds to one training example, and each

6

row in matrices Z and A corresponds to probability of one of the labels.

Gradient of cost function :

∇θ(k)J(θ) = −
m∑
i=1

[
x(i)

(
1{y(i) = k} − P (y(i) = k|x(i); θ)

)]
Implementation with Numpy -
dZ = A− Y
dtheta = 1./m ∗ np.dot(dZ,X.T)

where each column in matrix X corresponds to one training example, and each
row in matrices A (predicted) and Y (truth) corresponds to probability of one
of the labels.

Hyperparameters :

(a) Initialization for gradient descent : Random

(b) Learning rate for gradient descent : 0.007

(c) Number of epochs (passes over the training set) for gradient descent : 1000

Results :
Faces - Please refer Figures 5, 6 and 7.
Digits - Please refer Figures 8, 9 and 10.
Mean and Standard deviation are calculated under 5 iterations.

5 Model 4 : Neural Network

Features / Pre-processing :

(a) faces - all pixels, set 0.99999 for value, 0.00005 for empty
digits - all pixels, set 0.99999 for value #, 0.88888 for value +, 0.00005 for
empty

7

Figure 5: Faces dataset - mean test accuracy as a function of the number of
data points used for training

(b) faces - row wise moving average, with moving window size 6 and padded
for maintaining image dimension
digits - row wise moving average, with moving window size 4 and padded
for maintaining image dimension

(c) feature matrix flattened to vector, and label converted to one-hot encoded
vector

Setup and Hyperparameters :

(a) Optimizer : Adam
Exponential decay hyperparameter for the first moment estimates, beta1
= 0.9
Exponential decay hyperparameter for the second moment estimates, beta2
= 0.999
Hyperparameter preventing division by zero in Adam updates, epsilon =
1e-8

8

Figure 6: Faces dataset - standard deviation of test accuracy as a function of
the number of data points used for training

(b) Initializer for Adam : He initialization

(c) Number of hidden units -
Input layer / features : 4200 for faces, 784 for digits
Hidden layers : 80, 16
Output layer / Softmax : 2 for faces, 10 for digits

(d) Activation function : ReLU

(e) Learning rate for gradient descent : 0.00007

(f) Number of epochs (passes over the training set) for optimization : 100

(g) Probability of keeping a hidden unit active during drop-out, keepprob =
1 (No dropout)

Results :
Faces - Please refer Figures 11, 12 and 13.
Digits - Please refer Figures 14, 15 and 16.
Mean and Standard deviation are calculated under 5 iterations.

9

Figure 7: Faces dataset - training time as a function of the number of data
points used for training

6 References and Acknowledgements

(a) Naive Bayes and Perceptron : Code architecture and utility functions used
from the project created by Dan Klein and John DeNero that was given
as part of the programming assignments of Berkeley CS188 course.
URL - https://inst.eecs.berkeley.edu/ cs188/sp11/projects/classification/classification.html

(b) Softmax Regression :
URL - http://deeplearning.stanford.edu/tutorial/supervised/SoftmaxRegression/

(c) Neural Network : Code architecture and utility functions used from learn-
ings from multiple course assignments in the Deep Learning Specialization
by deeplearning.ai.
URL - https://www.coursera.org/specializations/deep-learning

10

Figure 8: Digits dataset - mean test accuracy as a function of the number of
data points used for training

11

Figure 9: Digits dataset - standard deviation of test accuracy as a function of
the number of data points used for training

Figure 10: Digits dataset - training time as a function of the number of data
points used for training

12

Figure 11: Faces dataset - mean test accuracy as a function of the number of
data points used for training

13

Figure 12: Faces dataset - standard deviation of test accuracy as a function of
the number of data points used for training

14

Figure 13: Faces dataset - training time as a function of the number of data
points used for training

15

Figure 14: Digits dataset - mean test accuracy as a function of the number of
data points used for training

16

Figure 15: Digits dataset - standard deviation of test accuracy as a function of
the number of data points used for training

17

Figure 16: Digits dataset - training time as a function of the number of data
points used for training

18

